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Shock wave structure was studied in [I] using Struminskii's model [2] with the 
assumption that viscosity and thermal conductivity exist only as interactions 
between components. The present study will obtain asymptotic solutions of the 
problem of shock wave structure in the Navier--Stokes approximation. 

i. 
dimensional nonsteady state case has the form [2] 

ap~,~ o~ Ou~ @~ F~ + o (  ~u~ I 

Oei e)el Oui louiS2 0 ( OTi I 
Pi ~ + PiUi "~- + Pi ~ = Qii + Pi~-x ) + ~ .Xi "-d-~z ]' 

p~ = Rip~T~,  ei = e i v T i ,  Pi = p . m i ,  i = i ,  2, i ==/= ],, 

The system of equations describing the flow of a binary gas mixture in the one- 

(1.1) 

where 0i, ui, Ti, mi, Pii are the mean density, velocity, temperature, volume concentration, 
and true density of the i-th component. The quantities Fij and Qij consider interaction be- 
tween the components and are taken in the form 

F i j  =- K ( u l  - -  ui) ,  Qi j  = K• - -  ui) "~ ~f q(T 7 - -  T~), 

• + • = 1. 

We will assume that Ri, K, xi, q, Di, %i, civ are some positive constants. In the future we 

will consider a mixture of monatomic gases, so that Yx = y2 = y, where Yi = 1 + Ri/civ. 

Assuming that all the unknown functions of system (i.i) depend on g = x- Dt, where D is 
the shock wave velocity, we obtain 

B l c l r  I R~c2T 2 dV 1 dV~ ( 1 . 2 )  
p~V~ = c~, elF1 + c2V2 + ~ + v2 c3 + ~1--~-~ + ~2 d~ ,'~ 

C 1 C l V r  1 --}- .+ cz c 2 v T  2 --}- + /{lClT 1 -1- R 2 c 2 T  2 = ~lVl  ~ -+- 

dV 2 dT 1 dT 2 
+ ~2V2 ~ + ~1 - ~  + X2 ~ + c~, 

dV 1 dT1/V 1 d2Vl 
C 1 "-~ 2i- Rio I ~ U (We - -  V1) + ~1 d~2 , 

dT 1 BlCtT 1 dV 1 [dVl  ~2 d2T1 
tClV ~ -~- V~- d~ K •  (v2 - -  wl)2 -']- q (T2 - -  T1) + [Llk-"~  ) 2t- ~1 d~ 2 , 

where c i are integration constants and V i = u i --D. 

We introduce dimensionless variables as follows: 

Vi = C1 _~ C2V~ ' T{ = (/~1C1 _L 1{2C2)(C 1 ~- C2) T{~ 
C 3 # 2 

7 C3 
P{ (Q -5 c2)z p{' (i. 3) 
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where ~, is the dedimensioning viscosity factor, which may, in particular, coincide with the 

mixture viscosity ahead of the shock wave. 

Substituting Eq. (1.3) in Eq. (1.2) and dropping the bar above the dimensionless quan- 

tities, we find 

_o T1 mO T~ dV~ dV~ p~v~___o,o,, o~ov~+o:ov~+,.~+ ~=~+~_~_+~ .,, (1.4) 

~2 dV~ dV~ 
c~~ V~ + V ~ A + + ~t~V~ ~ + .~---'~ m~ + Y ~ m ~  + -7- = l ' h V x - ~  - 

7--I ~ 2 

dT 1 dT~ + X~.-~ + X~--~, 

dV~ ,,,o a (T~/V,) K (V~ V~) + d~V~ 

ira 0 d r ,  Or i  dY 1 (dVil2  d2r l  
" e - t  ,~ + ml~--~-~ = K •  ~ + q ( T ~ - -  TO + ~ a~ / + ~-~-,~ 

where A = c,(cz + c2)/c~, a~ = ci/(cl + c2) (i = i, 2) 
mixture component ahead of the shock wave. 

We pose the following boundary problem for system 
of system (1.4) which will tend to a constant value at infinity, 

is the mass concentration of the i-th 

(1.4)- to find a solution Vi(~) , Ti(~) 
i.e., as ~ +-~o, 

(1.5) Vi "-~ V ~ "T, --* T~, dVt/d ~ -+ 0,, dTdd~ -)- O, 

as ~ + + oo, 

V~ --+ V~, T~ --~ T~, dVdd ~ --+ O, dTJd~ ~ O. 

The necessary condition for the existence of such a solution is obviously the requirement 
0 0 I I 

that V i = Vi, T i = T i and V i = Vi, T i = T i be equilibrium positions of system (1.4). This 

w i l l  o c c u r  i f  ~ = V  ~ = V o, T ~  r ~ = r o - -  V ~  V~ V~ = V 1 =  V ~ = 2? / (?  + i ) - - V  o, T~---- T 1 = r '  

= VI(  1 - - V 1 ) ,  V~ = 9oD2/'(9o D~ -}-Po) ' w h e r e  P o ,  Po a r e  t h e  m i x t u r e  d e n s i t y  a n d  p r e s s u r e  a h e a d  o f  

t h e  s h o c k  w a v e .  I t  c a n  e a s i l y  b e  p r o v e d  t h a t  t h e  p o i n t s  (V ~  T ~ ) , (V ~, T ~) e x i s t  a n d  a r e  
unique by directly solving system (1.4) with all derivatives with respect to ~ set equal to 
zero. For the future we will assume that thermal conductivity coefficients may be neglected, 
i.e., ~I = 0, ~2 = 0. 

2. We will consider the case where strong velocity interaction exists, i.e., I/K << i. 
With this assumption in the zeroth approximation we may rewrite Eq. (1.4) in the form 

dV v l = v ~  = v, v +  ~(m~ + . ,~  ~ + ~ , ~  (2.1) 

V ~ = A + dV ? .. (/Tzl~ -{- re~ -1- .~ ~V~.-~,, l' -- t 

m~ dT 1 _._oT1 dV (dVI ~ 
~---- ~ :~-~ + " ~ V ~  = q (T,  - T~) + ~ ~Tf l ' ~ = ~ + ~t~. 

Integrating system (2.1) with the condition that V(0) = (V ~ + VI)/2, we obtain 

2~V~ In (V ~ - -  V) - -  2~vt In (V - -  V t) - -  2rt In  V ~  vt  ( 2 . 2 )  
= ( v  o - v 1) (~ + 1) ( v~  - v 1) (v + t) ~ - Y  2 ; 

T 2 - - T I = B  v + l  V2 v+12 V + -~-i-7-] --~] 0V-(v-~)e-~ -~S e~ d*; (2.3) 
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dV Tx = V ({ --  V) + btV-d~-- m~ (T~ --  T1), (2.4) 

where 

Using Eq. 

vO __ V 1 ] - -  V ~ 2 t V + 0 q (7 t) 
/ ( v )  = v (~-" ~,-f~ ~, + W - ~ ] '  _.,,_o , 

(2.2), we write Eq. (2.3) in the form 

V0 
T, ,_  TI =~]V-(?-I) ~ u(?-2) (V~ ( V--FI~~ 

" v \ ~ ]  k ~ - - V ~ ]  (V~ - -  u)(u - -  V ~) du, 
(2.5) 

where 

,q = . ( / . / / . 0 ~  - -  ~ 1 )  (V 2 - -  ~ - ) / ( 2 / ' f b ~ ' 7 / ' O ~ )  �9 

Equations (2.2)-(2.4) define a solution of system (2.1) satisfying boundary conditions 
(1.5), as may be verified by direct transition to the limits as V § V ~ or V § V I. In the 

general case the integral in Eq. (2.5) may be expressed in terms of hypergeometric functions 

of two variables. It is evident from Eq. (2.5) that at n = 0 or m~2 = m~ T2 = Tt, while 
at N~0T2~ T~ . We will consider the case ~ > 0. It follows from the last equation of 
Eq. (2.1) that dTt/d~ > 0, i.e., T,(~) is a monotonically increasing function at--~ < ~ < +~. 
At small (V ~ -- V) is can easily be shown from Eqs. (2.4), (2.5) that T= -- T ~ ~ --K~(V ~ -- V), 
while at small (V -- V ~) T= -- T* ~ --K,(V -- V*), if e > i, and T= -- T I ~ K=(V -- Vt)U, if 

< i, where K,, K= are positive constants. Consequently at a < 1 dT~/d~ changes sign. 
Figure 1 qualitatively shows the possible behaviors of the functions T=(~), T~(~), and V(g). 

We will consider the limiting functions Ti(~) 
limit we obtain 

IV , 
V (~) = / ( V  ~ -[- V1)/2, 

lYL 

% (~) = T ~ 

and V(~) as ~i § 0. Taking ~t/~2 = k, 

~ < 0 ,  /To, ~ < 0 ,  IT~ ~ < 0 ,  
= 0, T~ (~) = T~ (~) -- 

~>0, [~(~), ~>0~ -[~(~), ~>0, 

, . .  _ ,~,,o ( w )  - ( ~ - ' e - ~  [ ( v ~ F  (t - r~)  - ( v o F  ( t  - v o ) ] ,  
m~ (k + t) 

~,($) ---- 2Ta - -  q)1($). 

in the 

It follows from the expressions obtained for ~ > 0 that T~ T~ = ~1(0)< TI~ T: = ~2(0)> TI> T o. 

The limiting behavior of T2(~), T~(~), andV(~) is shown in Fig. lb. When n < 0 it is necessary 

to interchange T= and TI in Fig. I. Thus in the limit as ~i § 0 the solution has a discon- 
tinuity with subsequent continuous temperature relaxation zone, with the size of the dis- 

continuity depending on the ratio ~i/~2 = k. 

3. We will consider the case of intense heat exchange between the components, i.e., 
I/q << i. The formulation of the last equation of system (1.4) then simplifies and will 

have the form TI = T2 = T. Moreover, we will assume that m ~ ~ 0, s ~ ~ m ~ pt ~ m ~ for ~t << 
m ~ K ~ m ~ If K >> m ~ we obtain the intense velocity interaction considered in Section 2. 

Considering these approximations and dropping terms of higher order smallness, we transform 

Eq. (1.4) to the form 

T dV 2 V~ ~ dV~ 
V 2+~ =I+~2 d~' 2 + _ T = A + ~ V  2-3-~,. (3.1) 

~ duV1 a ~ 7(. K - -  ~1 

Integrating the first two equations of system (3.1), we find 

i,' = v ~ ( l  - v~) - [(~ + 1 ) / 2 ] ( v o  - v~)(v~ i_  vD,.  
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while V2(~) is defined, like V($) of Section 2, by Eq. (2.2), with ~ replaced by ~. We will 

seek a solution of the last equation of system (3.1) for V~(() with the assumption that ~ = 

V ~ -- V ~ is small, i.e., assuming a weak shock wave. To do this we introduce new dimensionless 

velocities v i and temperatures ri defined by 

? s ? ? - - t  e 2 
V+ = 7 +  1 +--~-vi ,  Ti = + s ~ + - - - - .  ( 3 . 2 )  (v + i )  ~ 2 (v + i) 

Now V i = V ~ T i = T ~ correspond to v i = i, T i = --i, while V i = V I, T i = T I -- v i = --i, T i = i. 

As a result, in the zeroth approximation in ~ for v~, V= and zl = ~= = z we will have 

-- P2 (V + t)~ s~ = In - - , , +  + = - -  v+, 
27~t 2 I -~- v 2 

- -  d2Vl '~q - -  t dv dv2 
~1 d~ ~ 7 d~ -]- ~ - -  I N + K ( ~ - ~ )  = ~  

(3.3) 

Integrating the last equation of system (3.3) we find 

Vl = ~1 (V1 - -  +2) 

where v i are roots of the quadratic equation 

~2 < 0. The integrals appearing in Eq. (3.4) 

functions. 
we have 

-I-oo 

o oq, (3.4) 

~1 ~2 ~- [(I -- VH)/V]~ -- K = 0 , while vl > 0, 

are expressible in terms of hypergeometric 

Transforming from the expressions obtained to the limit as ~z § 0 with finite ~i, 

K? "3L" (7 -- l) u 
1, $ < 0 ,  1 - - 2  ~ e ~1~, $ < 0 ,  

v2 = O, ~ = O, v~ = { v ~ ' ~  (v~ - ~ )  
. K v §  v 2 %~ - a ,  e > o  I - , - z = -  - - o  , 

V 01v~ ( ~ 1  - v2) 
"17 = --/)2" 

(3.5) 

Moreover, it can easily be shown from Eq. (3.5) that Jim v I = v~ = lim v I , and lim dv I lira dv I 
~--,-o ~-,+o *.--,-o -~'~ ~ ~,+ +o -~'~, 

, ~V  § (V - -  t) v I 
where vl----1--2 ?~iv1(v1_v2). The qualitative form of the functions of Eq. (3.5) is shown in 

Fig. 2a, where curves 1-3 correspond to possible behaviors of the function vi(~)- i) 

y~ > 2y -- i, 2) ~o < 2y -- i, 3) ~iKy 2 + y(o -- l)(y -- i) < 0. If we let ~i § 0 (i = i, 

we then obtain for v~ 

ul = -- 1 ~- 2 -- )e ~25, ~>0 for VH>i, 

UI=V2 for 7U l, Vl / i - - 2 ~  ev~ 
t -  l, ~ > o  

2) 

for yo < i. In Fig. 2b curves 1-4 show the function v1(~) as ~i § 0 for the cases 

?a>2?--i, ?<?a<2?--i, i<?a<? , and yo < i. Thus the shock wave appears as a dis- 

continuity with subsequent continuous relaxation zone at yo > i, while for yo < 1 the con- 
tinous solution ends in a discontinuity. 

We will consider ~1 ~ 0, D2 >> ~i. Representing vl as a function of v= and expressing~ 
in terms of v2 from Eq. (3.3), after several simple transformations we obtain for small ~, 

6 9 9  



r V; �9 
If V~ T~ 

a ve ~ .  r /, 2, $ 
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where 

equation 

1 

~ = ~ + 2 (~ - ,~) "~ (~ - 1) ~ , : ~ .  ~& 
v~ - t ~ [v 0 - ~ )  + 1 + ~ l  ~ - 

1 

! ' [y  
- ~ - -  i (1 + ~ )  + i - ~,.t ~ 

= 27~t,/((7 + t)%), ~ = 7 K / ( ? ( ~ -  i) . 

?~ > I, (3.6) 

The f u n c t i o n s  v~ and v= a r e  t h e n  r e l a t e d  by  t h e  

~_, = ('e - ~) (~,~ - ~) + 2=~ (v~ - ~) (~= - "0 
(3.7) 

Results of a qualitative study of the integral curves of Eq. (3.7) in the plane (vl, v=) with 
consideration of Eqs. (3z3) , (3.6) are shown in Fig. 3, with curves I, 2 corresponding to the 
function v~(~); i) for ~Ky < y -- i, yo < i or ~A"?<?~-- I,i<76<27 , and 2) for those 
inequalities not satisfied. 

Thus, at a low concentration of the light component (~ < I) nonmonotonic behavior of the 
light component velocity is possible. 

4. We will consider the shock wave structure for a low concentration of one of the mix- 
ture components, without assuming strong velocity or temperature interaction. As in Section 

3, we let m~ ~ 0, ~ ~ m~, ~x ~ m~ or ~I << mY, K ~ m~, q ~ m~. Considering these assump- 
tions in the zeroth approximation in m~ we reduce system (1.4) to the form 

T 2 dV~ 2 T o +  V ~ = A +  dV2 
V2 + V~ = I + ~q d~ ' V 1 " "-2- ~:V~--~ , 

d2Wl dW 1 d (iPi/Wl) = ~ (V2 __ Vl) "Jc ~tl ~ ,  

"! dr 1 Tl dWl ( dVI ~ 2 
v - ~ a~ + ~ = ~: (v~ - v~)~ ,,~ + "~('c~ - T~) + "~ ~ a~ / ' 

(4.1) 
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where q = q/m~, K = K/m2, ~i = ~ i / m 2 .  

The first two equations of system (4.1) have the same form as Eq. (3.1), and thus can be 
integrated explicitly. We will find a solution for the last two equations of system (4.1) 

for the case of weak shock waves. We transform to new dimensionless velocities and tempera- 

tures with Eq. (3.2). Substituting Eqo (3.2) in Eq. (4.1) and dropping terms of higher order 
in c, in the zeroth approximation we obtain 

Uo == - -  T 2 = - -  U,~  O~ - -  

+ i -t- e c++' " 2y~+ ' 

+++" ( '++' 
+ 75 + T (? - i) d+ d+ ] 

d~ 1 dv  1 
,+-i + ~ = - $,(? - i) (v+ + +,) .  

Integrating the last two equations of Eq. 
(1.5) we have 

(]2 ~)I 
d~ ' 

( 4 . 2 )  

(4.2) with consideration of boundary conditions 

v i  = v+ ( ?K ~-F q (? - -  t ) : )  + ?Kq (? -- 1) e% + I e-++tv+.dt - -  

_ ~+. (v~ q- $'(Y - I) ~) + v K$(v - t) e~ j e-~tv~dt _ 

~, (v~ + $(v - i) ~) + vi~ (y - I) ~3 ~ -~t 
7 ~ 1  ( v i  - -  v2) (Vl  - -  v s )  e v e v ~ d t ,  

--oo 

~ = - v, + $'(v - I )  e -'~,(~'-~)~ ~ J' (vl - v+) 
0"~(?--I) ~ 

--oo 

(4.3) 

where vl < ~2 < 0 < v3 are roots of the equation 

( y - - i )  Kq =0. 

The order in which these roots are located follows from the inequalities: 

y(v = --(y -- I~) > 0, 9(0) < 0, y (~-oo) > 0. The expressions for vl and TI are of complex form 

and in the general case may be found numerically or expressed in terms of hypergeometric 
functions. Taking the limit Ui + 0 (i = i, 2) in Eq. (4.2), we obtain 

l, ~ < o ,  
v2(~)= 0, ~=0, ~ = - v ~ .  

-- l, ~>0, 

If ~ > i, then 

v, (+) = 
! 

I + 

l < +-7 ' 

where vl < v2 < 0 are the roots of the equation 

O. 
L i" J 

If o < i, then 

(4.4) 
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I_ll 2 [~$(~-r I) + ~ ~ $(~- I)2] e~' 
v,  (~)  = ('% - '%)(1 - =) L v3 

+ ("~ - %)(~ - ~ L "~ u ~ '  

--I+ (l--vO, g<O, �9 ~ (~) = ~ + $(~, - l )  
'P$ 

i - -  ~ + ~ ( ~ - 0  ( i+vO, ~ > 0 ,  

~<0, 

where v2 < 0 or V3 > 0 are roots of Eq. (4.4) at o < i. 

The qualitative behavior of the functions vi(~), Ti($) as ~i § 0 is shown in Fig. 4a, b 

for the cases o > i and o < i respectively. Thus, in the case of a low concentration of the 
heavy component (Fig. 4a) the mixture is in equilibrium right up to the shock wave front, 
after which the velocity and temperature of the heavy component relax to equilibrium values 
with no discontinuity. The heavy component temperature distribution in the shock wave is 
nonmonotonic. With a low concentration of the light component the mixture on both sides 
of the shock transition is in nonequilibrium conditions, tending to equilibrium as ~ § 
The temperature and velocity profiles of the light component are nonmonotonic. 

i, 

2. 
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SPALL DAMAGE TO A LIQUID METAL ACCOMPANYING 

PULSED ACTION OF RADIATION 

S. N. Kolgatin, A. M. Stepanov, and 
A. V. Khachatur'yants UDC 532.595.2 

The study of spallation accompanying the appearance of short-duration tensile 
stresses in a material, exceeding the material's tensile strength, is widely used to 
investigate the dynamic strength of solids [i]o Such stresses appear, in particular, in the 
presence of thermal shocks -- pulsed volume liberation of energy in a material accompanying 
pulse durations tp satisfying the condition tp S I/c, where I is the characteristic size of 
the region of energy liberation and c is the velocity of sound in the material. As shown in 
[2], instantaneous thermal shocks (corresponding to the more stringent condition tp << I/c), 
can lead to spalls with energy inputs significantly lower than the heat of fusion and, 
especially, the heat of evaporation of the material. In experiments modeling thermal 
shocks, laser radiation is usually used as the course of energy liberation for weakly ab- 
sorbing media and relativistic electron beams (REB) are used for metals [3, 4]. Experiments 
with REB correspond, as a rule, to the weaker condition tp~Z/c. 

Negative stresses and spalls can be observed not only in solids, but also in liquid 
metals [4]. The possibility of spalls must be taken into account, in particular, in setting 
up liquid-metal shielding of the first wall of pulsed thermonuclear reactors [5]. The action 
of fluxes of charged particles and x-ray radiation on a liquid metal usually leads to strong 

Leningrad. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 5, 
pp. 55-59, September-October, 1984. Original article submitted July 17, 1983. 

702 0021-8944/84/2505-0702508.50 �9 1985 Plenum Publishlng Corpora=ion 


