Shock wave structure was studied in [1] using Struminskii's model [2] with the assumption that viscosity and thermal conductivity exist only as interactions between components. The present study will obtain asymptotic solutions of the problem of shock wave structure in the Navier-Stokes approximation.

1. The system of equations describing the flow of a binary gas mixture in the onedimensional nonsteady state case has the form [2]

$$
\begin{gather*}
\frac{\partial \rho_{i}}{\partial t}+\frac{\partial \rho_{i} u_{i}}{\partial x}=0, \quad \rho_{i} \frac{\partial u_{i}}{\partial t}+\rho_{i} u_{i} \frac{\partial u_{i}}{\partial x}+\frac{\partial p_{i}}{\partial x}=F_{i j}+\frac{\partial}{\partial x}\left(\mu_{i} \frac{\partial u_{i}}{\partial x}\right), \tag{1.1}\\
\rho_{i} \frac{\partial e_{i}}{\partial t}+\rho_{i} u_{i} \frac{\partial e_{i}}{\partial x}+p_{i} \frac{\partial u_{i}}{\partial x}=Q_{i j}+\mu_{i}\left(\frac{\partial u_{i}}{\partial x}\right)^{2}+\frac{\partial}{\partial x}\left(\lambda_{i} \frac{\partial T_{i}}{\partial x}\right) \\
p_{i}=R_{i} \rho_{i} T_{i}, e_{i}=c_{i V} T_{i}, \rho_{i}=\rho_{i i} m_{i}, i=1,2, i \neq j,
\end{gather*}
$$

where $\rho_{i}, u_{i}, T_{i}, m_{i}, \rho_{i i}$ are the mean density, velocity, temperature, volume concentration, and true density of the $i-t h$ component. The quantities $F_{i j}$ and $Q_{i j}$ consider interaction between the components and are taken in the form

$$
\begin{gathered}
F_{i j}=K\left(u_{j}-u_{i}\right), Q_{i j}=K x_{i}\left(u_{j}-u_{i}\right)^{2}+q\left(T_{j}-T_{i}\right), \\
x_{1}+x_{2}=1 .
\end{gathered}
$$

We will assume that $R_{i}, K, x_{i}, q, \mu_{i}, \lambda_{i}, c_{i V}$ are some positive constants. In the future we will consider a mixture of monatomic gases, so that $\gamma_{1}=\gamma_{2}=\gamma$, where $\gamma_{i}=1+R_{i} / c_{i V}$.

Assuming that all the unknown functions of system (1.1) depend on $\xi=x-D t$, where D is the shock wave velocity, we obtain

$$
\begin{gather*}
\rho_{i} V_{i}=c_{i}, \quad c_{1} V_{1}+c_{2} V_{2}+\frac{R_{1} c_{1} T_{1}}{V_{1}}+\frac{R_{2} c_{2} T_{2}}{V_{2}}=c_{3}+\mu_{1} \frac{d V_{1}}{d \xi}+\mu_{2} \frac{d V_{2}}{d \xi} \tag{1.2}\\
c_{1}\left(c_{1 V} T_{1}+\frac{V_{1}^{2}}{2}\right)+c_{2}\left(c_{2} T_{2}+\frac{\Gamma_{2}^{2}}{2}\right)+R_{1} c_{1} T_{1}+R_{2} c_{2} T_{2}=\mu_{1} V_{1} \frac{d V_{1}}{d \xi}+ \\
+\mu_{2} V_{2} \frac{d V_{2}}{d \xi}+\lambda_{1} \frac{d T_{1}}{d \xi}+\lambda_{2} \frac{d T_{2}}{d \xi}+c_{4} \\
c_{1} \frac{d V_{1}}{d \xi}+R_{1} c_{1} \frac{d T_{1} / V_{1}}{d \xi}=K\left(V_{2}-V_{1}\right)+\mu_{1} \frac{d^{2} V_{1}}{d \xi} \\
{ }_{1} c_{1} V \\
\frac{d T_{1}}{d \xi}+\frac{R_{1} c_{1} T_{1}}{V_{1}} \frac{d V_{1}}{d \xi}=K{x_{1}}^{d \xi}\left(V_{2}-V_{1}\right)^{2}+q\left(T_{2}-T_{1}\right)+\mu_{1}\left(\frac{d V_{1}}{d \xi}\right)^{2}+\lambda_{1} \frac{d^{2} T_{1}}{d \xi^{2}}
\end{gather*}
$$

where c_{i} are integration constants and $V_{i}=u_{i}-D$.
We introduce dimensionless variables as follows:

$$
\begin{equation*}
\bar{V}_{i}=\frac{c_{1}+c_{2}}{c_{3}} V_{i}, \quad \bar{T}_{i}=\frac{\left(R_{1} c_{1}+R_{2} c_{2}\right)\left(c_{1}+c_{2}\right)}{c_{3}^{2}} T_{i x} \quad \bar{\rho}_{i}=\frac{c_{3}}{\left(c_{1}+c_{2}\right)^{2}} \rho_{i} \tag{1.3}
\end{equation*}
$$

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 5, pp. 48-54, September-October, 1984. Original article submitted August 22, 1983.

$$
\begin{gathered}
\bar{\mu}_{i}=\frac{\mu_{i}}{\mu_{*}}, \quad \bar{\lambda}_{i}=\frac{\lambda_{i}}{\lambda_{*}}, \quad \bar{\xi}=\frac{c_{1}+c_{2}}{\mu_{*}} \xi ; \quad \lambda_{*}=\frac{R_{1} c_{i}+R_{2} c_{2}}{c_{1}+c_{2}} \mu_{*}, \\
\bar{K}=\frac{K \mu_{*}}{\left(c_{1}+c_{2}\right)^{2}}, \quad \bar{q}=\frac{\mu_{*}}{\left(c_{1}+c_{2}\right)\left(R_{1} c_{1}+R_{2} c_{2}\right)} q,
\end{gathered}
$$

where μ_{*} is the dedimensioning viscosity factor, which may, in particular, coincide with the mixture viscosity ahead of the shock wave.

Substituting Eq. (1.3) in Eq. (1.2) and dropping the bar above the dimensionless quantities, we find

$$
\begin{gather*}
\rho_{i} V_{i}=\alpha_{i}^{0} \alpha_{2}^{0} V_{1}+\alpha_{1}^{0} V_{2}+m_{1}^{0} \frac{T_{1}}{V_{1}}+m_{2}^{0} \frac{T_{2}}{V_{2}}=1+\mu_{1} \frac{d V_{1}}{d \xi}+\mu_{2} \frac{d V_{2}}{d \xi} \tag{1,4}\\
\frac{\gamma}{\gamma-1} m_{1}^{0} T_{1}+\frac{\gamma}{\gamma-1} m_{2}^{0} T_{2}+\frac{\alpha_{1}^{0}}{2} V_{1}^{2}+\frac{\alpha_{2}^{0}}{2} V_{2}^{2}=A+\mu_{1} V_{1} \frac{d V_{1}}{d \xi}+\mu_{2} V_{2} \frac{d V_{2}}{d \xi}+ \\
+\lambda_{1} \frac{d T_{1}}{d \xi}+\lambda_{2} \frac{d T_{2}}{d \xi}, \\
\alpha_{1}^{0} \frac{d V_{1}}{d \xi}+m_{1}^{0} \frac{d\left(T_{1} / V_{1}\right)}{d \xi}=K\left(V_{2}-V_{1}\right)+\mu_{1} \frac{d^{2} V_{1}}{d \xi^{2}} \\
\frac{m_{1}^{0}}{\gamma-1} \frac{d T_{1}}{d \xi}+m_{1}^{0} \frac{T_{1}}{V_{1}} \frac{d V_{1}}{d \xi}=K \kappa_{1}\left(V_{2}-V_{1}\right)^{2}+q\left(T_{2}-T_{1}\right)+\mu_{1}\left(\frac{d V_{1}}{d \xi}\right)^{2}+\lambda_{1} \frac{d^{2} T_{1}}{d \xi^{2}},
\end{gather*}
$$

where $A=c_{4}\left(c_{1}+c_{2}\right) / c_{3}^{2}, \alpha_{i}^{0}=c_{i} /\left(c_{1}+c_{2}\right)(i=1,2)$ is the mass concentration of the $i-t h$ mixture component ahead of the shock wave.

We pose the following boundary problem for system (1.4): to find a solution $V_{i}(\xi), \mathrm{T}_{\mathrm{i}}(\xi)$ of system (1.4) which will tend to a constant value at infinity, i.e., as $\xi \rightarrow-\infty$,

$$
\begin{equation*}
V_{i} \rightarrow V_{i}^{0} \cdot T_{i} \rightarrow T_{i}^{\prime 0}, d V_{i} / d \xi \rightarrow 0_{2} d T_{i} / d \xi \rightarrow 0_{\Omega} \tag{1.5}
\end{equation*}
$$

as $\xi \rightarrow+\infty$,

$$
V_{i} \rightarrow V_{i}^{1}, T_{i} \rightarrow T_{i}^{1}, d V_{i} / d \xi \rightarrow 0, d T_{i} / d \xi \rightarrow 0
$$

The necessary condition for the existence of such a solution is obviously the requirement that $V_{i}=V_{i}^{0}, T_{i}=T_{i}^{o}$ and $V_{i}=V_{i}^{1}, T_{i}=T_{i}^{1}$ be equilibrium positions of system (1.4). This will occur if $V_{1}^{0}=V_{2}^{0}=V^{0}, T_{1}^{0}=T_{2}^{0}=T^{0}=V^{0}\left(1-V^{0}\right), V_{1}^{1}=V_{2}^{1}=V^{1}=2 \gamma /(\gamma+1)-V^{0}, T_{1}^{1}=T_{2}^{1}=T^{1}$ $=V^{1}\left(1-V^{1}\right), V^{0}=\rho_{0} D^{2} /\left(\rho_{0} D^{2}+p_{0}\right)$, where ρ_{0}, p_{0} are the mixture density and pressure ahead of the shock wave. It can easily be proved that the points $\left(V^{0}, T^{0}\right),\left(V^{1}, T^{1}\right)$ exist and are unique by directly solving system (1.4) with all derivatives with respect to ξ set equal to zero. For the future we will assume that thermal conductivity coefficients may be neglected, i.e., $\lambda_{1}=0, \lambda_{2}=0$.
2. We will consider the case where strong velocity interaction exists, i.e., $1 / \mathrm{K} \ll 1$. With this assumption in the zeroth approximation we may rewrite Eq. (1.4) in the form

$$
\begin{gather*}
V_{1}=V_{2}=V, \quad V+\frac{1}{V}\left(m_{1}^{0} T_{1}+m_{2}^{0} T_{2}\right)=1+\mu \frac{d V}{d \xi} \tag{2.1}\\
\frac{\gamma}{\gamma-1}\left(m_{1}^{0} T_{1}+m_{2}^{0} T_{2}\right)+\frac{1}{2} V^{2}=A+\mu V \frac{d V}{d \xi} \\
\frac{m_{1}^{0}}{\gamma-1} \frac{d T_{1}}{d \xi}+m_{1}^{0} \frac{T_{1}}{V} \frac{d V}{d \xi}=q\left(T_{2}-T_{1}\right)+\mu_{1}\left(\frac{d V}{d \xi}\right)^{2}, \quad \mu=\mu_{1}+\mu_{2} .
\end{gather*}
$$

Integrating system (2.1) with the condition that $V(0)=\left(V^{0}+V^{1}\right) / 2$, we obtain

$$
\begin{align*}
& \xi=\frac{2 \mu V^{0}}{\left(V^{0}-V^{1}\right)(\gamma+1)} \ln \left(V^{0}-V\right)-\frac{2 \mu V^{1}}{\left(V^{0}-V^{1}\right)(\gamma+1)} \ln \left(V-V^{1}\right)-\frac{2 \mu}{\gamma+1} \ln \frac{V^{0}-V^{1}}{2} \tag{2.2}\\
& T_{2}-T_{1}=\eta\left(\frac{V^{2}}{\gamma+1}-\frac{2}{\gamma+1} V+\frac{V^{0}-V^{1}}{\gamma-1}\right)-\eta \theta V^{-(\gamma-1)} e^{-\theta \xi} \int_{-\infty}^{\xi} e^{\theta \tau} f(V) d \tau \tag{2.3}
\end{align*}
$$

$$
\begin{equation*}
T_{1}=V(1-V)+\mu V \frac{d V}{d \xi}-m_{2}^{0}\left(T_{2}-T_{1}\right), \tag{2.4}
\end{equation*}
$$

where

$$
f(V)=V^{(\gamma-1)}\left[\frac{V^{2}}{\gamma+1}-\frac{2}{\gamma+1} V+\frac{V^{0}-V^{1}}{\gamma-1}\right], \quad \theta=\frac{q(\gamma-1)}{m_{1}^{0} m_{2}^{0}},
$$

Using Eq. (2.2), we write Eq. (2.3) in the form

$$
\begin{equation*}
T_{2}-T_{1}=\eta V^{-(\gamma-1)} \int_{V}^{V^{0}} u^{(\gamma-2)}\left(\frac{V^{0}-u}{V^{0}-V}\right)^{\beta}\left(\frac{V-T^{1}}{u-V^{1}}\right)^{\alpha}\left(V^{0}-u\right)\left(u-V^{1}\right) d u \tag{2.5}
\end{equation*}
$$

where

$$
\eta=,\left(m_{1}^{0} \mu-\mu_{1}\right)\left(\gamma^{2}-1\right) /\left(2 m_{1}^{0} m_{2}^{0} \mu\right)
$$

Equations (2.2)-(2.4) define a solution of system (2.1) satisfying boundary conditions (1.5), as may be verified by direct transition to the limits as $V \rightarrow V^{0}$ or $V \rightarrow V^{1}$. In the general case the integral in Eq. (2.5) may be expressed in terms of hypergeometric functions of two variables. It is evident from Eq. (2.5) that at $\eta=0$ or $m_{1}^{0} \mu_{2}=m_{2}^{o} \mu_{1} T_{2}=T_{1}$, while at $\eta \geqslant 0 T_{2} \geqslant T_{1}$. We will consider the case $\eta>0$. It follows from the last equation of Eq. (2.1) that $d T_{1} / d \xi>0$, i.e., $\mathrm{T}_{1}(\xi)$ is a monotonically increasing function at $-\infty<\xi<+\infty$. At small ($\mathrm{V}^{0}-V$) is can easily be shown from Eqs. (2.4), (2.5) that $T_{2}-T^{0} \sim-K_{1}\left(V^{0}-V\right)$, while at small $\left(V-V^{1}\right) T_{2}-T^{1} \sim-K_{1}\left(V-V^{1}\right)$, if $\alpha>1$, and $T_{2}-T^{2} \sim K_{2}\left(V-V^{1}\right) \alpha$, if $\alpha<1$, where K_{1}, K_{2} are positive constants. Consequently at $\alpha<1 d T_{2} / d \xi$ changes sign. Figure 1 qualitatively shows the possible behaviors of the functions $T_{2}(\xi), T_{1}(\xi)$, and $V(\xi)$. We will consider the limiting functions $T_{i}(\xi)$ and $V(\xi)$ as $\mu_{i} \rightarrow 0$. Taking $\mu_{i} / \mu_{2}=k$, in the limit we obtain

$$
\begin{gathered}
V(\xi)=\left\{\begin{array}{ll}
V^{0}, & \xi<0, \\
\left(V^{0}+V^{1}\right) / 2, & \xi=0, \\
V^{1}, & \xi>0,
\end{array}, T_{1}(\xi)=\left\{\begin{array}{ll}
T_{0}, & \xi<0, \\
\varphi_{1}(\xi), & \xi>0,
\end{array} T_{2}(\xi)= \begin{cases}T_{0}^{0}, & \xi<0, \\
\varphi_{2}(\xi), & \xi>0,\end{cases} \right.\right. \\
\varphi_{1}(\xi)=T^{1}-\frac{m_{1}^{0}-k m_{2}^{0}}{m_{1}^{0}(k+1)}\left(V^{1}\right)^{-(\gamma-1)} e^{-0 \xi}\left[\left(V^{1}\right)^{\gamma}\left(1-V^{1}\right)-\left(V^{0}\right)^{\gamma}\left(1-V^{0}\right)\right], \\
\varphi_{2}(\xi)=2 T^{1}-\varphi_{1}(\xi) .
\end{gathered}
$$

It follows from the expressions obtained for $\eta>0$ that $T^{0}<T_{1}^{*}=\varphi_{1}(0)<T^{1}, T_{2}^{*}=\varphi_{2}(0)>T^{1}>T^{0}$.
The limiting behavior of $\mathrm{T}_{2}(\xi), \mathrm{T}_{1}(\xi)$, and $\mathrm{V}(\xi)$ is shown in Fig. 1 b . When $\eta<0$ it is necessary to interchange T_{2} and T_{1} in Fig. 1. Thus in the limit as $\mu_{i} \rightarrow 0$ the solution has a discontinuity with subsequent continuous temperature relaxation zone, with the size of the discontinuity depending on the ratio $\mu_{1} / \mu_{2}=k$.
3. We will consider the case of intense heat exchange between the components, i.e., $1 / q \ll 1$. The formulation of the last equation of system (1.4) then simplifies and will have the form $T_{1}=T_{2}=T$. Moreover, we will assume that $m_{1}^{0} \sim 0, \alpha_{1}^{0} \sim m_{1}^{0}, \mu_{1} \sim m_{1}^{0}$ for $\mu_{1} \ll$ $m_{1}^{o}, K \sim m_{1}^{o}$. If $K \gg m_{i}^{0}$, we obtain the intense velocity interaction considered in Section 2 . Considering these approximations and dropping terms of higher order smallness, we transform Eq. (1.4) to the form

$$
\begin{gather*}
V_{2}+\frac{T}{V_{2}}=1+\mu_{2} \frac{d V_{2}}{d \xi}, \quad \frac{V_{2}^{2}}{2}+\frac{\gamma}{\gamma-1} T=A+\mu_{2} V_{2} \frac{d V_{2}}{d \xi} \tag{3.1}\\
\sigma \frac{d V_{1}}{d \xi}+\frac{d\left(T_{1} / V_{1}\right)}{d \xi}=\widetilde{K}\left(V_{2}-V_{1}\right)+\widetilde{\mu}_{1} \frac{d^{2} V_{1}}{d \xi^{2}}, \quad \sigma=\frac{\alpha_{1}^{0}}{m_{1}^{0}}, \quad \widetilde{K}=\frac{K}{m_{1}^{0}}, \quad \widetilde{\mu_{1}}=\frac{\mu_{1}}{m_{1}^{0}}
\end{gather*}
$$

Integrating the first two equations of system (3.1), we find

$$
T=V_{2}\left(1-V_{2}\right)-[(\gamma+1) / 2]\left(V^{0}-V_{2}\right)\left(V_{2}-V^{1}\right)
$$

while $V_{2}(\xi)$ is defined, like $V(\xi)$ of Section 2, by Eq. (2.2), with μ replaced by μ_{2}. We will seek a solution of the last equation of system (3.1) for $V_{1}(\xi)$ with the assumption that $\varepsilon=$ $\mathrm{V}^{0}-\mathrm{V}^{1}$ is small, i.e., assuming a weak shock wave. To do this we introduce new dimensionless velocities v_{i} and temperatures τ_{i} defined by

$$
\begin{equation*}
V_{i}=\frac{\gamma}{\gamma+1}+\frac{\varepsilon}{2} v_{i}, \quad T_{i}=\frac{\gamma}{(\gamma+1)^{2}}+\frac{\gamma-1}{2(\gamma+1)} \varepsilon \tau_{i}-\frac{\varepsilon^{2}}{4} \tag{3.2}
\end{equation*}
$$

Now $V_{i}=V^{0}, T_{i}=T^{0}$ correspond to $v_{i}=1, \tau_{i}=-1$, while $V_{i}=V^{1}, T_{i}=T^{1}-v_{i}=-1$, $\tau_{i}=1$. As a result, in the zeroth approximation in ε for v_{1}, V_{2} and $\tau_{1}=\tau_{2}=\tau$ we will have

$$
\begin{gather*}
\frac{(\gamma+1)^{2}}{2 \gamma \mu_{2}} \varepsilon \xi=\ln \frac{1-v_{2}}{1+v_{2}^{2}} \tau=-v_{2} \tag{3.3}\\
\tilde{\mu}_{1} \frac{d^{2} v_{1}}{d \xi_{\xi}^{2}}-\frac{\gamma \sigma-1}{\gamma} \frac{d v}{d \xi}+\frac{\gamma-1}{\gamma} \frac{d v_{2}}{d \xi}+\widetilde{K}\left(v_{2}-v_{1}\right)=0
\end{gather*}
$$

Integrating the last equation of system (3.3) we find

$$
\begin{equation*}
v_{1}=\frac{1}{\tilde{\mu}_{1}\left(v_{1}-v_{2}\right)}\left\{\left(\tilde{K}+\frac{\gamma-1}{\gamma} v_{1}\right) \mathrm{e}^{v_{1} \xi} \int_{\xi}^{+\infty} v_{2} \mathrm{e}^{-v_{1} t} d t+\left(\widetilde{K}+\frac{\gamma-1}{\gamma} v_{2}\right) \mathrm{e}^{v_{\mathrm{E}} \mathrm{\xi}} \int_{-\infty} v_{2} \mathrm{e}^{-v_{2} t} d t\right\} \tag{3.4}
\end{equation*}
$$

where v_{i} are roots of the quadratic equation $\tilde{\mu}_{1} v^{2}+[(1-\gamma \sigma) / \gamma] v-\widetilde{K}=0$, while $v_{1}>0$, $\nu_{2}<0$. The integrals appearing in Eq. (3.4) are expressible in terms of hypergeometric functions. Transforming from the expressions obtained to the limit as $\mu_{2} \rightarrow 0$ with finite $\tilde{\mu}_{1}$, we have

$$
v_{2}=\left\{\begin{align*}
1, & \xi<0, \tag{3.5}\\
0, & \xi=0, v_{1}=\left\{\begin{array}{cl}
1-2 \frac{\widetilde{K} \gamma+(\gamma-1) v_{1}}{\gamma \widetilde{\mu}_{1} v_{1}\left(v_{1}-v_{2}\right)} \mathrm{e}^{v_{1} \xi}, & \xi<0 \\
-1, & \xi>0, \\
-1-2 \frac{\widetilde{K} \gamma+(\gamma-1) v_{2}}{\widetilde{\gamma}_{1} v_{2}\left(v_{1}-v_{2}\right)} \mathrm{e}^{v_{2} \xi}, & \xi>c \\
\tau=-v_{2} .
\end{array}\right.
\end{align*}\right.
$$

Moreover, it can easily be shown from Eq. (3.5) that $\lim _{\xi \rightarrow-0} v_{1}=v_{1}^{*}=\lim _{\xi \rightarrow+0} v_{1}$, and $\lim _{\xi \rightarrow-0} \frac{d v_{1}}{d \xi} \neq \lim _{\xi \rightarrow+0} \frac{d v_{1}}{d \xi}$, where $v_{1}^{*}=1-2 \frac{\widetilde{K} \gamma+(\gamma-1) v_{1}}{\gamma \widetilde{\mu}_{1} v_{1}\left(v_{1}-v_{2}\right)}$. The qualitative form of the functions of Eq. (3.5) is shown in Fig. 2a, where curves $1-3$ correspond to possible behaviors of the function $v_{i}(\xi)$: 1) $\gamma \sigma>2 \gamma-1,2) \gamma \sigma<2 \gamma-1,3) \tilde{\mu}_{\mathbf{i}} \tilde{\mathrm{K}} \gamma^{2}+\gamma(\sigma-1)(\gamma-1)<0$. If we let $\mu_{i} \rightarrow 0(\mathbf{i}=1$, 2) we then obtain for v_{1}

$$
\begin{gathered}
v_{1}=\left\{\begin{array}{c}
1, \xi<0, \\
-1+\frac{2 \gamma(1-\sigma)}{1-\gamma \sigma} \mathrm{e}^{v_{2} \xi}, \xi>0 \quad \text { for } \quad \gamma \sigma>1,
\end{array}\right. \\
v_{1}=v_{2} \quad \text { for } \gamma \sigma=1, \quad v_{1}=\left\{\begin{array}{r}
1-2 \frac{\gamma(1-\sigma)}{1-\gamma \sigma} \mathrm{e}^{v_{1} \xi}, \quad \xi<0, \\
-1, \quad \xi>0
\end{array}\right.
\end{gathered}
$$

for $\gamma \sigma<1$. In Fig. $2 b$ curves $1-4$ show the function $v_{1}(\xi)$ as $\mu_{i} \rightarrow 0$ for the cases $\gamma \sigma>2 \gamma-1, \quad \gamma<\gamma \sigma<2 \gamma-1,1<\gamma \sigma<\gamma$, and $\gamma \sigma<1$. Thus the shock wave appears as a discontinuity with subsequent continuous relaxation zone at $\gamma \sigma>1$, while for $\gamma \sigma<1$ the continous solution ends in a discontinuity.

We will consider $\tilde{\mu}_{1} \sim 0, \mu_{2} \gg \tilde{\mu}_{1}$. Representing v_{1} as a function of v_{2} and expressing ξ in terms of v_{2} from Eq. (3.3), after several simple transformations we obtain for small μ_{1},

Fig. 1

Fig. 3

Fig. 4

$$
\begin{gather*}
v_{1}=v_{2}+2\left(1-v_{2}^{2}\right) \frac{\gamma(\sigma-1)}{\gamma \sigma-1} \int_{0}^{1} \frac{y^{\alpha \beta} d y}{\left[y\left(1-v_{2}\right)+1+v_{2}\right]^{2}} \text { for } \quad \gamma \sigma>1 \tag{3.6}\\
v_{1}=v_{2}-2\left(1-v_{2}^{2}\right) \frac{\gamma(\sigma-1)}{\gamma \sigma-1} \int_{0}^{1} \frac{y^{-\alpha \beta} d y}{\left[y\left(1+v_{2}\right)+1-v_{2}\right]^{2}} \text { for } \quad \gamma \sigma<1_{2}
\end{gather*}
$$

where $\alpha=2 \gamma \mu_{2} /\left((\gamma+1)^{2} \varepsilon\right), \beta=\gamma \widetilde{K} /(\gamma \sigma-1)$. The functions v_{1} and v_{2} are then related by the equation

$$
\begin{equation*}
\frac{d v_{1}}{d v_{2}}=\frac{(\gamma-1)\left(v_{2}^{2}-1\right)+2 \alpha \beta(\gamma \sigma-1)\left(v_{2}-v_{1}\right)}{(\gamma \sigma-1)\left(v_{2}^{2}-1\right)} . \tag{3.7}
\end{equation*}
$$

Results of a qualitative study of the integral curves of Eq. (3.7) in the plane (v_{1}, v_{2}) with consideration of Eqs. (3.3), (3.6) are shown in Fig. 3, with curves 1, 2 corresponding to the function $v_{1}(\xi)$; 1) for $\alpha \tilde{\mathrm{K}} \gamma<\gamma-1$, $\gamma \sigma<1$ or $\alpha \tilde{\kappa} \gamma<\gamma \sigma-1,1<\gamma \sigma<2 \gamma$, and 2) for those inequalities not satisfied.

Thus, at a low concentration of the light component ($\sigma<1$) nonmonotonic behavior of the light component velocity is possible.
4. We will consider the shock wave structure for a low concentration of one of the mixture components, without assuming strong velocity or temperature interaction. As in Section 3, we let $\mathrm{m}_{1}^{\circ} \sim 0, \alpha_{1}^{\circ} \sim \mathrm{m}_{1}^{0}, \mu_{1} \sim \mathrm{~m}_{1}^{0}$ or $\mu_{1} \ll \mathrm{~m}_{1}^{0}, \mathrm{~K} \sim \mathrm{~m}_{1}^{\circ}, \mathrm{q} \sim \mathrm{m}_{1}^{o}$. Considering these assumptions in the zeroth approximation in m_{1}^{0} we reduce system (1.4) to the form

$$
\begin{gather*}
V_{2}+\frac{T_{2}}{V_{2}}=1+\mu_{2} \frac{d V_{2}}{d \xi}, \frac{\gamma}{\gamma-1} T_{2}+\frac{V_{2}^{2}}{2}=A+\mu_{2} V_{2} \frac{d V_{2}}{d \xi} \tag{4.1}\\
\sigma \frac{d V_{1}}{d \xi}+\frac{d\left(T_{1} / V_{1}\right)}{d \xi}=\widetilde{K}\left(V_{2}-V_{1}\right)+\tilde{\mu}_{1} \frac{d^{2} V_{1}}{d \xi_{\xi}^{2}} \\
\frac{1}{\gamma-1} \frac{d T_{1}}{d \xi}+\frac{T_{1}}{V_{1}} \frac{d V_{1}}{d \xi}=\widetilde{K}\left(V_{2}-V_{1}\right)^{2} x_{1}+\tilde{q}\left(T_{2}-T_{1}\right)+\tilde{\mu}_{1}\left(\frac{d V_{1}}{d \xi}\right)^{2}
\end{gather*}
$$

where $\tilde{q}=\mathrm{q} / \mathrm{m}_{1}^{0}, \tilde{\mathrm{~K}}=\mathrm{K} / \mathrm{m}_{1}^{0}, \tilde{\mu}_{1}=\mu_{1} / \mathrm{m}_{1}^{0}$.
The first two equations of system (4.1) have the same form as Eq. (3.1), and thus can be integrated explicitly. We will find a solution for the last two equations of system (4.1) for the case of weak shock waves. We transform to new dimensionless velocities and temperatures with Eq. (3.2). Substituting Eq. (3.2) in Eq. (4.1) and dropping terms of higher order in ε, in the zeroth approximation we obtain

$$
\begin{gather*}
v_{2}=\frac{1-\mathrm{e}^{\alpha \xi}}{1+\mathrm{e}^{\alpha \xi}}, \quad \tau_{2}=-v_{2}, \quad \alpha=\frac{(\gamma+1)^{2} \varepsilon}{2 \gamma \mu_{2}}, \tag{4.2}\\
\sigma \frac{d v_{1}}{d \xi}+\frac{1}{\gamma}\left((\gamma-1) \frac{d \tau_{1}}{d \xi}-\frac{d v_{1}}{d \xi}\right)=\widetilde{K}\left(v_{2}-v_{1}\right)+\tilde{\mu}_{1} \frac{d^{2} v_{1}}{d \xi^{2}} \\
\frac{d \tau_{1}}{d \xi}+\frac{d v_{1}}{d \xi}=-\widetilde{q}(\gamma-1)\left(v_{2}+\tau_{1}\right) .
\end{gather*}
$$

Integrating the last two equations of Eq. (4.2) with consideration of boundary conditions (1.5) we have

$$
\begin{align*}
v_{1} & =\frac{v_{3}\left(\gamma \widetilde{K}+\tilde{q}(\gamma-1)^{2}\right)+\gamma \widetilde{K} \tilde{q}(\gamma-1)}{\gamma \widetilde{\mu}_{1}\left(v_{3}-v_{1}\right)\left(v_{3}-v_{2}\right)} \mathrm{e}^{v_{3} \xi} \int_{\tilde{\xi}_{5}}^{+\infty} \mathrm{e}^{-v_{3} t} v_{2} d t- \tag{4.3}\\
- & \frac{v_{2}\left(\gamma \widetilde{K}+\tilde{q}(\gamma-1)^{2}\right)+\gamma \tilde{K} \tilde{q}(\gamma-1)}{\gamma \widetilde{\mu}_{1}\left(v_{2}-v_{1}\right)\left(v_{2}-v_{3}\right)} \mathrm{e}^{v_{2} \xi} \int_{-\infty}^{\xi} \mathrm{e}^{-v_{2} t} v_{2} d t- \\
& -\frac{v_{1}\left(\gamma \widetilde{K}+\tilde{q}(\gamma-1)^{2}\right)+\gamma \tilde{K} \tilde{q}(\gamma-1)}{\gamma \widetilde{\mu}_{1}\left(v_{1}-v_{2}\right)\left(v_{1}-v_{3}\right)} \mathrm{e}^{v_{1} \xi} \int_{-\infty}^{\xi} \mathrm{e}^{-v_{1} t} v_{2} d t \\
\tau_{1} & =-v_{1}+\tilde{q}(\gamma-1) \mathrm{e}^{-\tilde{q}(\gamma-1) \xi} \int_{-\infty}^{\xi}\left(v_{1}-v_{2}\right) \mathrm{e}^{\tilde{q}(\gamma-1) t} d t
\end{align*}
$$

where $v_{1}<v_{2}<0<v_{3}$ are roots of the equation

$$
y(v)=v^{3}+\left[(\gamma-1) \tilde{q}-\frac{\sigma-1}{\widetilde{\mu}_{1}}\right] v^{2}-\left[\frac{\widetilde{K}}{\widetilde{\mu}_{1}}+\tilde{q} \frac{(\gamma \sigma-1)(v-1)}{\gamma \widetilde{\mu}_{1}}\right] v-\frac{(v-1) \widetilde{K} \tilde{q}}{\widetilde{\mu}_{1}}=0 .
$$

The order in which these roots are located follows from the inequalities: $y(v=-(\gamma-1) \tilde{q})>0, y(0)<0, y(+\infty)>0$. The expressions for v_{1} and τ_{1} are of complex form and in the general case may be found numerically or expressed in terms of hypergeometric functions. Taking the limit $\mu_{i} \rightarrow 0(i=1,2)$ in Eq. (4.2), we obtain

$$
v_{2}(\xi)=\left\{\begin{array}{rl}
1, & \xi<0 \\
0, & \xi=0, \\
-1, & \xi>0
\end{array} \quad \tau_{2}=-v_{2}\right.
$$

If $\sigma>1$, then

$$
v_{1}(\xi)=\left\{\begin{array}{l}
1, \quad \xi<0, \\
-1+\frac{2}{(1-\sigma)\left(v_{1}-v_{2}\right)}\left[\left(\frac{\tilde{K} \tilde{q}(\gamma-1)}{v_{1}}+\widetilde{K}+\tilde{q} \frac{(\gamma-1)^{2}}{\gamma}\right) \mathrm{e}^{v_{1} \xi}-\right. \\
\left.-\left(\frac{\tilde{K} \tilde{q}(\gamma-1)}{v_{2}}+\widetilde{K}+\tilde{q} \frac{(\gamma-1)^{2}}{\gamma}\right) \mathrm{e}^{v_{2} \xi}\right], \quad \xi>0
\end{array}\right.
$$

where $\nu_{1}<\nu_{2}<0$ are the roots of the equation

$$
\begin{equation*}
(\sigma-1) v^{2}+\left[\widetilde{K}+\tilde{q}(\gamma \sigma-1) \frac{\gamma-1}{\gamma}\right] v+(\gamma-1) \widetilde{K} \tilde{q}=0 \tag{4.4}
\end{equation*}
$$

If $\sigma<1$, then

$$
\begin{aligned}
& v_{1}(\xi)=\left\{\begin{array}{cc}
1-\frac{2}{\left(v_{3}-v_{2}\right)(1-\sigma)}\left[\frac{\widetilde{K} \tilde{q}(\gamma-1)}{v_{3}}+\tilde{K}+\frac{\tilde{q}(\gamma-1)^{2}}{\gamma}\right] \mathrm{e}^{v_{3} \tilde{\xi}}, & \xi<0, \\
-1+\frac{2}{\left(v_{2}-v_{3}\right)(1-\sigma)}\left[\frac{\widetilde{K} \tilde{q}(\gamma-1)}{v_{2}}+\widetilde{K}+\frac{\tilde{q}(\gamma-1)^{2}}{\gamma}\right] \mathrm{e}^{v_{2} \bar{\xi}}, & \xi>0,
\end{array}\right. \\
& \tau_{1}(\xi)=\left\{\begin{aligned}
-1+\frac{v_{3}}{v_{3}+\widetilde{q}(\gamma-1)}\left(1-v_{1}\right), & \xi<0, \\
1-\frac{v_{3}}{v_{2}+\widetilde{q}(\gamma-1)}\left(1+v_{1}\right), & \xi>0,
\end{aligned}\right.
\end{aligned}
$$

where $v_{2}<0$ or $v_{3}>0$ are roots of Eq. (4.4) at $\sigma<1$.
The qualitative behavior of the functions $v_{i}(\xi), \tau_{i}(\xi)$ as $\mu_{i} \rightarrow 0$ is shown in Fig. 4a, b for the cases $\sigma>1$ and $\sigma<1$ respectively. Thus, in the case of a low concentration of the heavy component (Fig. 4a) the mixture is in equilibrium right up to the shock wave front, after which the velocity and temperature of the heavy component relax to equilibrium values with no discontinuity. The heavy component temperature distribution in the shock wave is nonmonotonic. With a low concentration of the light component the mixture on both sides of the shock transition is in nonequilibrium conditions, tending to equilibrium as $\xi \rightarrow+\infty$. The temperature and velocity profiles of the light component are nonmonotonic.

LITERATURE CITED

1. G. A. Ruev, V. M. Fomin, and N. N. Yanenko, "Shock wave structure in gas mixtures," Dok1. Akad. Nauk SSSR, 261, No. 2 (1981).
2. V. V. Struminskii, "Effect of diffusion velocity on gas mixture flow," Prikl. Mat. Mekh., 38, No. 2 (1974).

SPALL DAMAGE TO A LIQUID METAL ACCOMPANYING
PULSED ACTION OF RADIATION
S. N. Kolgatin, A. M. Stepanov, and
A. V. Khachatur'yants

UDC 532.595 .2

The study of spallation accompanying the appearance of short-duration tensile stresses in a material, exceeding the material's tensile strength, is widely used to investigate the dynamic strength of solids [1]. Such stresses appear, in particular, in the presence of thermal shocks - pulsed volume liberation of energy in a material accompanying pulse durations t_{p} satisfying the condition $t_{p} \leqslant Z / c$, where l is the characteristic size of the region of energy liberation and c is the velocity of sound in the material. As shown in [2], instantaneous thermal shocks (corresponding to the more stringent condition $t_{p} \ll l / c$), can lead to spalls with energy inputs significantly lower than the heat of fusion and, especially, the heat of evaporation of the material. In experiments modeling thermal shocks, laser radiation is usually used as the course of energy liberation for weakly absorbing media and relativistic electron beams (REB) are used for metals [3, 4]. Experiments with REB correspond, as a rule, to the weaker condition $t_{p} \leqslant l / c$.

Negative stresses and spalls can be observed not only in solids, but also in liquid metals [4]. The possibility of spalls must be taken into account, in particular, in setting up liquid-metal shielding of the first wall of pulsed thermonuclear reactors [5]. The action of fluxes of charged particles and x-ray radiation on a liquid metal usually leads to strong

Leningrad. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 5, pp. 55-59, September-October, 1984. Original article submitted July 17, 1983.

